Linear operators on GPs ====================================== Regularity of Stochastic Processes -------------------------------------- **Definition** (mean-square continuity): Let :math:`\{ X ( t ) : t \in \mathcal { T } \}` be a mean-zero process. The kernel :math:`k` is continuous in :math:`(t,t)` if and only if :math:`\mathbb { E } \left[ ( X ( t + h ) - X ( t ) ) ^ { 2 } \right] \rightarrow 0` as :math:`h \rightarrow 0`. In particular, if :math:`k \in \mathrm { C } ( \mathcal { T } \times \mathcal { T } )`, then :math:`\{ X ( t ) : t \in \mathcal { T } \}` is *mean-square continuous*. **Definition** (mean-square derivative): A process :math:`\{ X ( t ) : t \in \mathcal { T } \}` is *mean-square differentiable* with *mean-square derivative* :math:`\frac { d X ( t ) } { d t }` if, for all :math:`t \in \mathcal { T }`, we have as :math:`h \rightarrow 0` :math:`\| \frac { X ( t + h ) - X ( t ) } { h } - \frac { d X ( t ) } { d t } \| _ { L ^ { 2 } ( \Omega ) } = \mathbb { E } \left[ | \frac { X ( t + h ) - X ( t ) } { h } - \frac { d X ( t ) } { d t } | ^ { 2 } \right] ^ { 1 / 2 } \rightarrow 0`. **Theorem**: Let :math:`\{ X ( t ) : t \in \mathcal { T } \}` be a stochastic process with mean zero. Suppose that the kernel :math:`k \in \mathrm { C } ^ { 2 } ( \mathcal { T } \times \mathcal { T } )`. Then :math:`X(t)` is mean-square differentiable and the derivative :math:`\frac { d X ( t ) } { d t }` has kernel :math:`\frac { \partial ^ { 2 } k ( s , t ) } { \partial s \partial t }`. *Proof*: For any :math:`s,t \in \mathcal{T}` and real constants :math:`h_s,h_t > 0`, .. math:: \operatorname { Cov } ( \frac { X ( s + h_s ) - X ( s ) } { h_s } , \frac { X ( t + h_t ) - X ( t ) } { h_t } ) &= \frac { 1 } { h_s h_t } \mathbb { E } [ ( X ( s + h_s ) - X ( s ) ) ( X ( t + h_t ) - X ( t ) ) ] \\ &= \frac { 1 } { h_s h_t } ( k ( s + h_s , t + h_t ) - k ( s + h_s , t ) - k ( s , t + h_t ) + k ( s , t ) ) A simple calculation with the Taylor series shows that the right-hand side converges to :math:`\frac { \partial ^ { 2 } k ( s , t ) } { \partial s \partial t }` as :math:`h_s,h_t \rightarrow 0`. With a similar approach and setting as in the previous theorem, we can calculate the covariance between a Gaussian process and its mean-square derivative. .. math:: \operatorname { Cov } ( X ( s ), & \frac { X ( t + h ) - X ( t ) } { h } ) = \frac { 1 } { h } \mathbb { E } [ ( X ( s ) ) ( X ( t + h ) - X ( t ) ) ] = \frac { 1 } { h } ( k ( s, t + h ) - k ( s , t ) ) The right hand side converges to :math:`\frac{\partial}{\partial t}k(s,t)` as :math:`h \rightarrow 0`. .. Example 5.36 properties of Gaussian covariance .. Example 6.7 Gaussian covariance is well-defined **Theorem** (mean-square regularity): Let :math:`u(x)` be a mean-zero second-order random field. If the kernel :math:`k \in C(D \times D)`, then :math:`u(x)` is mean-square continuous so that :math:`\| u ( \mathbf{x} + \mathbf{h} ) - u ( \mathbf{x} ) \| _ { L ^ { 2 } ( \Omega ) } \rightarrow 0` as :math:`h \rightarrow 0 \; \forall x \in D`. If :math:`k \in C^2(D \times D)`, then :math:`u(x)` is mean-square differentiable. That is, a random field :math:`\frac { \partial u ( x ) } { \partial x _ { i } }` exists such that .. math:: \| \frac { u \left( \mathbf { x } + h e _ { i } \right) - u ( \mathbf { x } ) } { h } - \frac { \partial u ( \mathbf { x } ) } { \partial x _ { i } } \| _ { L ^ { 2 } ( \Omega ) } \rightarrow 0 \quad \text { as } h \rightarrow 0 and :math:`\frac { \partial u ( x ) } { \partial x _ { i } }` has the kernel :math:`k _ { i } ( x , y ) = \frac { \partial ^ { 2 } C ( x , y ) } { \partial x _ { i } \partial y _ { i } }`. Especially this theorem tells us, how zero-mean Gaussian Processes transform, when taking derivatives. Raissi describes in his paper, that the following even holds for general linear transformations :cite:`Raissi2017a`: Let :math:`u \sim GP(0, k_{uu})` and :math:`\mathcal{L}_x` be a linear transformation. Then for :math:`f = \mathcal{L}_x u` it holds: 1. :math:`f \sim GP(0, k_{ff})` 2. The covariance function of :math:`f` is given by :math:`k_{ff} = \mathcal{L}_{x}\mathcal{L}_{x'}k_{uu}`. 3. The covariance between :math:`u(x)` and :math:`f(x')` is given by :math:`k_{uf} = \mathcal{L}_{x'}k_{uu}`, whereas the covariance between :math:`f(x)` and :math:`u(x')` is given by :math:`k_{fu} = \mathcal{L}_x k_{uu}`.