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Conclusion

It has been demonstrated that estimating parameters using a Gaussian process approach works well for a variety of PDEs arising from linear operators.
Even though we have worked with time schemes in the example of Burgers’ Equation, this methodology in general circumvents the need for
any discretization methods. When working with truly noisy data, the parameter s (which we have set to 1e-7 in most cases) can be varied or even optimized as well. This approach unfortunately can’t really be applied to non-linear equations, only by using workarounds like replacing the non-linear term with the mean as we did in Burgers’ Equation, essentially transforming the non-linear equation to a linear one. Using this remedy, we still get good results as we saw in Chapters 4.2.4 and 4.2.5.
In our case, five to eight data samples were sufficient to learn the parameters within a margin of error of 0.058 and 0.0009 in the linear, and 0.5 and 0.16 in the non-linear cases. Using 20 data samples, we were able to estimate the parameters to an accuracy of 0.6 percent.


Problems with the RBF kernel

One of the problems we noticed with the RBF kernel is that for more than 30 data points, the final covariance matrix was frequently ill-conditioned. This happens more often, when the length-scale is large. With the increased number of points, the probability of points being close to each other increases and then the respective columns of the covariance matrix will be almost equal, especially when working with a large length-scale.  Hence, this kernel is not good enough for practical purposes on large datasets. The immediate solution that comes to mind to tackle this problem is to do a singular value decomposition. [1] outlines the RBF-QR algorithm to avoid these issues. Stable computations can also be acheived using Hermite polynomials [2], [3].




Non-linearity

In Burgers’ Equation we approximated the non-linear term by a constant term. This yields good results for some special cases but is not a generic approach. The problem arises because the product of Gaussian processes does not result in a Gaussian process. Nevertheless, we could utilize the fact that the product of Gaussian distributions is also Gaussian in order to come up with a proper solution. Another approach is to assume priors over the kernel hyperparameters and infer parameters with MCMC sampling schemes [4].




Kernel computations

The current framework involves two computations for every operator over the kernel. It is easy to do this by hand for simple operators but even then there is scope for manual error. It would be nice to have a tool to compute the transformed kernels automatically. Some progress has been made at this front resulting in a package for symbolic kernel computations available on this project’s GitHub repository [5].
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Preface

A great challenge for researchers with many applications in the applied sciences is to use vast available data sets and blend them with differential equations. For instance these methods can be used for verification and validation processes, which need to be undertaken in order to design well-functioning simulation software. This is also of special interest to the Max Planck Institute.
Concretely, we are interested in finding the relationship between two black-box functions \(u\) and \(f\) based on possibly noisy data \(\{X_u, u(X_u)\}\) and \(\{X_f, f(X_f)\}\). That is, in specifying the form of the transformation \(\mathcal{L}_x^{\phi} u(x) = f(x)\). We presume to know the form of the transformation \(\mathcal{L}_x^{\phi}\) up to a set of unknown parameters \(\phi\).
This setup falls under the broad range of so-called inverse problems, which occur often in diverse scientific disciplines.
An example application would be to take the classical problem of heat conduction in a medium with unknown conductivity properties. The distribution of temperature is then governed by the Heat Equation, which is a type of PDE. The thermal diffusivity coefficient would, however, be unknown and needs to be estimated.
Using Gaussian Processes to create a framework shedding light on the optimal parameters of the transformation \(\mathcal{L}_x^{\phi}\) has many advantages. They can be used as flexible priors, describing a distribution over functions and provide a powerful training procedure, coming from a probabilistic viewpoint. They can themselves be seen as a one-layer neural network with infinitely many hidden units. In contrast to meshless methods, the optimal (hyper-)parameters can be learned by minimizing the negative log-likelihood function and don’t have to be guessed or tuned manually. Whereas the main difference to latent force models, which are one of the few existing frameworks for combining machine learning tools with differential equations, is, that there is no need to solve the differential equation either analytically or numerically.

This paper is based mostly on the research conducted by Raissi et al. [13]. In their paper, applications consist of a fractional equation, an integro-differential equation, a reaction-diffusion PDE and the Heat Equation. Whilst their code was written in Matlab, we implement their methodology in Python and by doing this, also making it more accessible.

Notes regarding the contents

In order to retain comparability, in each chapter we will work with a set of points \(X\) with elements in \([0,1]^n\) where n is the number of dimensions. We always use either 10 or 20 points with the corresponding function values \((X,Y_u, Y_f)\) as data samples. In this range, the estimates are good and the computation cost low.

We will mostly stick with a noise parameter of \(s=10^{-7}\), due to a trade-off between having a well-conditioned matrix and accuracy: Our data samples are generated without any noise, so the lower the noise parameter, the more accurate our estimation should be. Setting \(s=0\) would increase the likelihood of having to work with an ill-conditioned or singular matrix, since two columns in the covariance matrix corresponding to two points being close to each other would have almost equal values. We want to avoid this, since, when calculating the negative log-likelihood, we have to calculate the inverse of the covariance matrix. When working with noisy data on the other hand, one could optimize over the parameter s as well.

Most code cells from our notebooks are missing in the report. This has been done to improve readability. For the complete notebooks, we refer to our GitHub repository [5].





          

      

      

    

  

    
      
          
            
  
Introduction to Gaussian processes

This chapter develops the theory behind Gaussian processes and Gaussian fields. In simple terms, stochastic processes are families of random variables parameterized by a scalar variable \(t \in \mathbb{R}\) denoting time. A random field, on the other hand, is a stochastic process parameterized by \(x \in \mathbb{R}^d\) for \(d > 1\) often denoting space. We begin with a review of univariate and multivariate normal distributions and use them to understand the properties of Gaussian processes.


Gaussian distributions

The univariate Gaussian (normal) distribution has a probability density given by


\[p ( x; \mu, \sigma ) = \frac { 1 } { \sqrt { 2 \pi } \sigma } \exp \left\{ - \frac { 1 } { 2 \sigma ^ { 2 } } ( x - \mu ) ^ { 2 } \right\},\]

where \(x, \mu, \sigma \in \mathbb{R}\). If a random variable X is Gaussian distributed with mean \(\mu\) and variance \(\sigma\), we commonly write \(X \sim \mathcal{N}(\mu, \sigma)\).

If \(Y \sim \mathcal{N}(\mu, \sigma)\) and \(\alpha \in \mathbb{R}\), then


\[\alpha Y \sim \mathcal{N}(\alpha \mu, \alpha^2 \sigma).\]

A p-dimensional multivariate Gaussian (or normal) distribution has a joint probability density given by


\[p ( \mathbf { X} | \mathbf { \mu } , \Sigma ) = ( 2 \pi ) ^ { - p / 2 } | \Sigma | ^ { - 1 / 2 } \exp \left( - \frac { 1 } { 2 } ( \mathbf { X } - \mathbf { \mu } ) ^ { T } \Sigma ^ { - 1 } ( \mathbf { X } - \mathbf { \mu } ) \right),\]

where \(\mathbf{\mu} \in \mathbb{R}^p\) is the mean vector and \(\Sigma \in GL(p, \mathbb{R})\) is the (symmetric and positive semi-definite) covariance matrix. This is commonly denoted as \(\mathbf{X} \sim \mathcal{N}(\mathbf{\mu}, \Sigma)\) or \(\mathbf{X} \sim \mathcal{N}_p(\mathbf{\mu}, \Sigma)\) to specify the dimension.

If \(Y = BX + b\) where \(B \in \mathbb{R}^{q \times p}, rank(B) = q\) and \(b \in \mathbb{R}^q\), then


\[Y \sim \mathcal{N}(B\mathbf{\mu} + b, B \Sigma B^T).\]

Let \(\mathbf{X} \sim \mathcal{N}_p(\mathbf{\mu}, \Sigma)\) and decompose \(\mathbf{X}, \mathbf{\mu}, \Sigma\) as


\[\begin{split}\mathbf{X} = \begin{pmatrix}
X_1 \\
X_2
\end{pmatrix},
\mathbf{\mu} = \begin{pmatrix}
\mu_1 \\ \mu_2
\end{pmatrix} \text{ and }
\Sigma = \begin{pmatrix}
\Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \\
\end{pmatrix}\end{split}\]

with \(\Sigma_{11} \in \mathbb{R}^{n \times n}\) and \(\Sigma_{22} \in \mathbb{R}^{m \times m}\) and the remaining variables respectively.

Then the conditional probability of \(X_2\) is given by


\[X _ { 2 } | X _ { 1 } \sim N _ { p _ { 2 } }(\mu _ { 2 } + \Sigma _ { 21 } \Sigma _ { 11 } ^ { - 1 } \left( X _ { 1 } - \mu _ { 1 } \right), \Sigma _ { 22 } - \Sigma _ { 21 } \Sigma _ { 11 } ^ { - 1 } \Sigma _ { 12 }).\]




Gaussian processes

The following definitions and theorems are to introduce the concept of Gaussian processes and fields. For detailed discussions and proofs, please refer to [9].

Definition (Stochastic process):


Given a set \(\mathcal{T} \subset \mathbb{R}\), a measurable space  \(( H , \mathcal{H} )\), and a probability space \((\Omega, \mathcal{F}, \mathbb{P})\), an \(H\)-valued stochastic process is a set of \(H\) -valued random variables \(\{X(t): t \in \mathcal{T}\}\). We simply write \(X(t)\) to denote the process. To emphasize the dependence on \(\omega\) and that \(X : \mathcal{T} \times \Omega \rightarrow \mathbb{R}\), we may write \(X(t,\omega)\).




Definition (Second-order process):


A real-valued stochastic process is second-order if \(X(t) \in L^2(\Omega)\) for each \(t \in \mathcal{T}\). The mean function is defined by \(\mu(t) := \mathbb{E}[X(t)]\) and the covariance function (also referred to as the kernel) is defined by \(k(s, t) : = Cov(X(s), X(t)))\) for all \(s,t \in \mathcal{T}\).




Definition (Real-valued Gaussian process):


A real-valued second-order stochastic process \(\{X(t): t \in \mathcal{T}\}\) is Gaussian if \(\mathbf{X} = [X(t_1), \dotsc, X(t_M)]^T\) follows a multivariate Gaussian distribution for any \(t_1, \dotsc, t_M \in \mathcal{T}\) and any \(M \in \mathbb{N}\).




Theorem:


Let \(\mathcal{T} \subset \mathbb{R}\). The following statements are equivalent.


	There exists a real-valued second-order stochastic process \(X(t)\)  with mean function \(\mu(t)\) and kernel \(k(s, t)\).


	The function \(\mu\) maps \(\mathcal{T} \rightarrow \mathbb{R}\) and the function \(k\) maps \(\mathcal{T} \times \mathcal{T} \rightarrow \mathbb{R}\). Furthermore \(k\) is symmetric and positive semi-definite.







Corollary:


The probability distribution \(\mathbb { P } _ { X }\) on \(\left( \mathbb { R } ^ { \mathcal { T } } , \mathcal { B } \left( \mathbb { R } ^ { \mathcal { T } } \right) \right)\) of a real-valued Gaussian process \(X(t)\) is uniquely determined by its mean \(\mu : \mathcal { T } \rightarrow \mathbb { R }\) and kernel \(k : \mathcal { T } \times \mathcal { T } \rightarrow \mathbb { R }\).




Definition (Random field):


For a set \(D \subset \mathbb { R } ^ { d }\), a (real-valued) random field \(\{ u ( x ) : x \in D \}\) is a set of real-valued random variables on a probability space \(( \Omega , \mathcal { F } , \mathbb { P } )\). In the subsequent text, we drop \(\omega \in \Omega\) and simply write \(u(x)\), although it should be noted that \(u : D \times \Omega \rightarrow \mathbb { R }\).




Definition (Second-order field):


For a set \(D \subset \mathbb { R } ^ { d }\), a random field \(\{ u ( x ) : x \in D \}\) is second-order if \(u (x) \in L ^ { 2 } ( \Omega ) \; \forall x \in D\). We say a second-order random field has mean function \(\mu ( x ) \in L ^ { 2 } ( \Omega )\) and kernel

\(k ( \mathbf { x } , \mathbf { y } ) = \operatorname { Cov } ( u ( \mathbf { x } ) , u ( \mathbf { y } ) ) : = \mathbb { E } [ ( u ( \mathbf { x } ) - \mu ( \mathbf { x } ) ) ( u ( \mathbf { y } ) - \mu ( \mathbf { y } ) ) ] , \quad \mathbf { x } , \mathbf { y } \in D\)




Definition (Gaussian random field):


A Gaussian random field \(\{u(x):x\in D\}\) is a second-order random field such that \(u = \left[ u \left( x _ { 1 } \right) , u \left( x _ { 2 } \right) , \ldots , u \left( x _ { M } \right) \right] ^ { T }\) follows the multivariate Gaussian distribution for any \(x _ { 1 } , \ldots , x _ { M } \in D\) and any \(M \in \mathbb { N }\). We denote it here as \(\mathbf { u } \sim \mathbf { GP } ( \mathbf { \mu } , k )\) where \(\mu _ { i } = \mu \left( x _ { i } \right)\) and \(k _ { i j } = k \left( x _ { i } , x _ { j } \right)\).




An important thing to note is, that by sampling an element \(u\) from a Gaussian Process, we are thereby sampling a set of function values for the points in the domain \(D\) and can thus view \(u\) as a function itself.

Since we will deal with different dimensions throughout the text, we will use the term ‘(Gaussian) process’ for both of these cases to improve readability.




Kernels

This subchapter is to give an overview over the most popular kernels for a Gaussian Process.


Squared Exponential Kernel

It is also called Radial Basis Function kernel (RBF kernel), or Gaussian kernel, which is as follows:


\[k _ { \mathrm { SE } } \left( x , x ^ { \prime } \right) = \sigma ^ { 2 } \exp \left( - \frac { \lVert x - x ^ { \prime } \rVert_2 ^ { 2 } } { 2 l ^ { 2 } } \right)\]

The length-scale \(l\) determines the width of the kernel; in other words, the larger \(l\) is, the smoother the function is. The signal variance \(\sigma^{2}\) controls the variance of the sampled functions. All the standard kernels have this parameter in front as a scale factor.

It has become the default kernel for GPs and pyGPs, and we have also chosen this kernel for our project, which will be explained in the later section.




Rational Quadratic Kernel


\[k _ { \mathrm { RQ } } \left( x , x ^ { \prime } \right) = \sigma ^ { 2 } \left( 1 + \frac { \lVert x - x ^ { \prime } \rVert_2 ^ { 2 } } { 2 \alpha \ell ^ { 2 } } \right) ^ { - \alpha }\]

This kernel is equivalent to adding together many RBF kernels with different length-scales, or can be seen as an infinite sum of RBF kernels. If \(\alpha \rightarrow \infty\), then the RQ is identical to the RBF.




Periodic Kernel


\[k _ { \operatorname { Per } } \left( x , x ^ { \prime } \right) = \sigma ^ { 2 } \exp \left( - \frac { 2 \sin ^ { 2 } \left( \pi \lVert x - x ^ { \prime } \rVert_2 / p \right) } { \ell ^ { 2 } } \right)\]

It is obvious that the periodic kernel (derived by David Mackay) is designed for functions with repeating structures. Its parameters are easily interpretable:

The period \(p\) is the distance between repetitions of the function.

The length-scale \(l\) has the same interpretation as the length-scale in the RBF kernel.




Linear Kernel


\[k _ { \mathrm { Lin } } \left( x , x ^ { \prime } \right) = \sigma^ { 2 } ( x - c )^T \left( x ^ { \prime } - c \right)\]

The linear kernel, unlike other kernels, is a non-stationary covariance function, which means that it does not solely depend on \(x - x ^{ \prime }\) . Thus by fixing the hyperparameters and moving the data, the model will yield different predictions.




Our Choice

Since our project is mainly based on the Raissi’s paper, so we also follow his choice of the kernel. The reason has been stated in his 2017 paper:


In particular, the squared exponential covariance function chosen above implies smooth approximations. More complex function classes can be accommodated by appropriately choosing kernels. For example, non-stationary kernels employing nonlinear warpings of the input space can be constructed to capture discontinuous response.




We have used the pyGPs package to test the kernels written above and customized kernels (see our project on GitHub). It seems that the RBF kernels work for most functions at hand.









          

      

      

    

  

    
      
          
            
  


Simple example of a Gaussian process

The following example illustrates how we move from process to
distribution and also shows that the Gaussian process defines a
distribution over functions.

\(f \sim \mathcal{GP}(m,k)\)

\(m(x) = \frac{x^2}{4}\)

\(k(x,x') = exp(-\frac{1}{2}(x-x')^2)\)

\(y = f + \epsilon\)

\(\epsilon \sim \mathcal{N}(0, \sigma^2)\)



In [1]:






## Importing necessary packages
import numpy as np
import matplotlib.pyplot as plt









In [2]:






## Generating x-axis of 50 linearly spaced data points
## in the range between -5 and 5.
x = np.arange(-5,5,0.2)
n = x.size
s = 1e-7        # Noise parameter for y: s = sigma^2









In [3]:






## Defining the mean function
m = np.square(x) * 0.25









In [4]:






## Defining the covariance matrix k_y with respect to x
a = np.repeat(x, n).reshape(n, n)
k_y = np.exp(-0.5*np.square(a - a.transpose())) \
    + s*np.identity(n)









In [5]:






## We sample an n-dimensional vector of function values
## for y
r = np.random.multivariate_normal(m, k_y, 1)
y = np.reshape(r, n)









In [6]:






## The missing function values are filled in smoothly
## by the matplotlib-package
plt.figure(figsize = (3,2))
plt.plot(x,y)
plt.show()












[image: ../_images/report_02-simple_gp_6_0.png]








          

      

      

    

  

    
      
          
            
  
Linear operators on GPs


Regularity of Stochastic Processes

Definition (mean-square continuity):


Let \(\{ X ( t ) : t \in \mathcal { T } \}\) be a mean-zero process. The kernel \(k\) is continuous in \((t,t)\) if and only if \(\mathbb { E } \left[ ( X ( t + h ) - X ( t ) ) ^ { 2 } \right] \rightarrow 0\) as \(h \rightarrow 0\). In particular, if \(k \in \mathrm { C } ( \mathcal { T } \times \mathcal { T } )\), then \(\{ X ( t ) : t \in \mathcal { T } \}\) is mean-square continuous.




Definition (mean-square derivative):


A process \(\{ X ( t ) : t \in \mathcal { T } \}\) is mean-square differentiable with mean-square derivative \(\frac { d X ( t ) } { d t }\) if, for all \(t \in \mathcal { T }\), we have as \(h \rightarrow 0\)

\(\| \frac { X ( t + h ) - X ( t ) } { h } - \frac { d X ( t ) } { d t } \| _ { L ^ { 2 } ( \Omega ) } = \mathbb { E } \left[ | \frac { X ( t + h ) - X ( t ) } { h } - \frac { d X ( t ) } { d t } | ^ { 2 } \right] ^ { 1 / 2 } \rightarrow 0\).




Theorem:


Let \(\{ X ( t ) : t \in \mathcal { T } \}\) be a stochastic process with mean zero. Suppose that the kernel \(k \in \mathrm { C } ^ { 2 } ( \mathcal { T } \times \mathcal { T } )\). Then \(X(t)\) is mean-square differentiable and the derivative \(\frac { d X ( t ) } { d t }\) has kernel \(\frac { \partial ^ { 2 } k ( s , t ) } { \partial s \partial t }\).




Proof:


For any \(s,t \in \mathcal{T}\) and real constants \(h_s,h_t > 0\),


\[\begin{split}\operatorname { Cov } ( \frac { X ( s + h_s ) - X ( s ) } { h_s } ,  \frac { X ( t + h_t ) - X ( t ) } { h_t } ) &= \frac { 1 } { h_s h_t } \mathbb { E } [ ( X ( s + h_s ) - X ( s ) ) ( X ( t + h_t ) - X ( t ) ) ] \\
&= \frac { 1 } { h_s h_t } ( k ( s + h_s , t + h_t ) - k ( s + h_s , t ) - k ( s , t + h_t ) + k ( s , t ) )\end{split}\]

A simple calculation with the Taylor series shows that the right-hand side converges to \(\frac { \partial ^ { 2 } k ( s , t ) } { \partial s \partial t }\) as \(h_s,h_t \rightarrow 0\).




With a similar approach and setting as in the previous theorem, we can calculate the covariance between a Gaussian process and its mean-square derivative.



\[\operatorname { Cov } ( X ( s ), & \frac { X ( t + h ) - X ( t ) } { h } ) = \frac { 1 } { h } \mathbb { E } [ ( X ( s ) ) ( X ( t + h ) - X ( t ) ) ] = \frac { 1 } { h } ( k ( s, t + h ) - k ( s , t ) )\]




The right hand side converges to \(\frac{\partial}{\partial t}k(s,t)\) as \(h \rightarrow 0\).

Theorem (mean-square regularity):


Let \(u(x)\) be a mean-zero second-order random field. If the kernel \(k \in C(D \times D)\), then \(u(x)\) is mean-square continuous so that \(\| u ( \mathbf{x} + \mathbf{h} ) - u ( \mathbf{x} ) \| _ { L ^ { 2 } ( \Omega ) } \rightarrow 0\) as \(h \rightarrow 0 \; \forall x \in D\). If \(k \in C^2(D \times D)\), then \(u(x)\) is mean-square differentiable. That is, a random field \(\frac { \partial u ( x ) } { \partial x _ { i } }\) exists such that


\[\| \frac { u \left( \mathbf { x } + h e _ { i } \right) - u ( \mathbf { x } ) } { h } - \frac { \partial u ( \mathbf { x } ) } { \partial x _ { i } } \| _ { L ^ { 2 } ( \Omega ) } \rightarrow 0 \quad \text { as } h \rightarrow 0\]

and \(\frac { \partial u ( x ) } { \partial x _ { i } }\) has the kernel \(k _ { i } ( x , y ) = \frac { \partial ^ { 2 } C ( x , y ) } { \partial x _ { i } \partial y _ { i } }\).




Especially this theorem tells us, how zero-mean Gaussian Processes transform, when taking derivatives. Raissi describes in his paper, that the following even holds for general linear transformations [13]:

Let \(u \sim GP(0, k_{uu})\) and \(\mathcal{L}_x\) be a linear transformation. Then for \(f = \mathcal{L}_x u\) it holds:


	\(f \sim GP(0, k_{ff})\)


	The covariance function of \(f\) is given by \(k_{ff} = \mathcal{L}_{x}\mathcal{L}_{x'}k_{uu}\).


	The covariance between \(u(x)\) and \(f(x')\) is given by \(k_{uf} = \mathcal{L}_{x'}k_{uu}\), whereas the covariance between \(f(x)\) and \(u(x')\) is given by \(k_{fu} = \mathcal{L}_x k_{uu}\).










          

      

      

    

  

    
      
          
            
  


1D Linear operator with one parameter

This chapter introduces a basic example of the framework developed in
Chapter 3. We take a one-dimensional system with a single parameter and
extract an operator out of it.

:raw-latex:`\begin{align*}
\mathcal{L}_x^\phi u(x) &= f(x) \\
\mathcal{L}_x^\phi &:= \phi \cdot + \frac{d}{dx}\cdot
\end{align*}`

It is trivial to verify linearity of the operator:

:raw-latex:`\begin{align*}
u, f : [0, 1] &\rightarrow \mathbb{K}, \alpha, \beta \in \mathbb{R} \\
\mathcal{L}_x^\phi (\alpha u + \beta f) &= \phi (\alpha u + \beta f) + \frac{d}{dx}(\alpha u + \beta f) \\
&= \alpha \phi u + \beta \phi f + \alpha \frac{d}{dx}u + \beta \frac{d}{dx}f \\
&= \alpha \mathcal{L}_x^\phi u + \beta \mathcal{L}_x^\phi f
\end{align*}`

One of the solutions to this system might be:

:raw-latex:`\begin{align*}
u(x) &= x^3 \\
f(x) &= \phi x^3 + 3x^2 \\
x &\in [0, 1]
\end{align*}`

We define Gaussian priors on the input and output:

:raw-latex:`\begin{align*}
u(x) &\sim \mathcal{GP}(0, k_{uu}(x,x',\theta)) \\
f(x) &\sim \mathcal{GP}(0, k_{ff}(x,x',\theta,\phi))
\end{align*}`

A noisy data model for the above system can be defined as:

:raw-latex:`\begin{align*}
y_u &= u(X_u) + \epsilon_u; \epsilon_u \sim \mathcal{N}(0, \sigma_u^2I)\\
y_f &= f(X_f) + \epsilon_f; \epsilon_f \sim \mathcal{N}(0, \sigma_f^2I)
\end{align*}`

For the sake of simplicity, we ignore the noise terms \(\epsilon_u\)
and \(\epsilon_f\) while simulating the data. They’re nevertheless
beneficial, when computing the negative log marginal likelihood (NLML)
so that the resulting covariance matrix is mostly more well-behaved for
reasons as they were outlined after the preface.

For the parameter estimation problem for the linear operator described
above, we are given \(\{X_u, y_u\}\), \(\{X_f, y_f\}\) and we
need to estimate \(\phi\).


Step 1: Simulate data

We use \(\phi = 2\).



In [2]:






def get_simulated_data(n1, n2, phi):
    x_u = np.random.rand(n1)
    y_u = np.power(x_u, 3)
    x_f = np.random.rand(n2)
    y_f = phi*np.power(x_f, 3) + 3*np.power(x_f,2)
    return(x_u, y_u, x_f, y_f)









In [4]:






plt.show()












[image: ../_images/report_04-par_est_4_0.png]







Step 2: Evaluate kernels

We use the RBF kernel defined as:

:raw-latex:`\begin{align*}
k_{uu}(x_i, x_j; \theta) = \theta exp(-\frac{1}{2l}(x_i-x_j)^2)
\end{align*}`

throughout the report. It is worth noting that this step uses
information about \(\mathcal{L}_x^\phi\) but not about \(u(x)\)
or \(f(x)\). The derivatives are computed using sympy.



In [5]:






x_i, x_j, theta, l, phi = sp.symbols('x_i x_j theta l phi')
kuu_sym = theta*sp.exp(-l*((x_i - x_j)**2))
kuu_fn = sp.lambdify((x_i, x_j, theta, l), kuu_sym, "numpy")
def kuu(x, theta, l):
    k = np.zeros((x.size, x.size))
    for i in range(x.size):
        for j in range(x.size):
            k[i,j] = kuu_fn(x[i], x[j], theta, l)
    return k







:raw-latex:`\begin{align*}
k_{ff}(x_i,x_j;\theta,\phi) &= \mathcal{L}_{x_i}^\phi \mathcal{L}_{x_j}^\phi k_{uu}(x_i, x_j; \theta) \\
&= \mathcal{L}_{x_i}^\phi \left( \phi k_{uu} + \frac{\partial}{\partial x_j}k_{uu} \right) \\
&= \phi^2 k_{uu} + \phi \frac{\partial}{\partial x_j}k_{uu} + \phi \frac{\partial}{\partial x_i}k_{uu} + \frac{\partial}{\partial x_i}\frac{\partial}{\partial x_j}k_{uu} \\
&= \theta exp(-\frac{1}{2l}(x_i-x_j)^2)\left[ \phi^2 + 2\phi |x_i-x_j| + (x_i-x_j)^2 + 1 \right]
\end{align*}`



In [6]:






kff_sym = phi**2*kuu_sym \
            + phi*sp.diff(kuu_sym, x_j) \
            + phi*sp.diff(kuu_sym, x_i) \
            + sp.diff(kuu_sym, x_j, x_i)
kff_fn = sp.lambdify((x_i, x_j, theta, l, phi), kff_sym, "numpy")
def kff(x, theta, l, phi):
    k = np.zeros((x.size, x.size))
    for i in range(x.size):
        for j in range(x.size):
            k[i,j] = kff_fn(x[i], x[j], theta, l, phi)
    return k







:raw-latex:`\begin{align*}
k_{fu}(x_i,x_j;\theta,\phi) &= \mathcal{L}_{x_i}^\phi k_{uu}(x_i, x_j; \theta) \\
&= \phi k_{uu} + \frac{\partial}{\partial x_i}k_{uu}  \\
&= \theta exp(-\frac{1}{2l}(x_i-x_j)^2) \left[ (\frac{1}{2})2|x_i-x_j| + \phi \right] \\
&= \theta exp(-\frac{1}{2l}(x_i-x_j)^2)(\phi + |x_i-x_j|)
\end{align*}`



In [7]:






kfu_sym = phi*kuu_sym + sp.diff(kuu_sym, x_i)
kfu_fn = sp.lambdify((x_i, x_j, theta, l, phi), kfu_sym, "numpy")
def kfu(x1, x2, theta, l, phi):
    k = np.zeros((x2.size, x1.size))
    for i in range(x2.size):
        for j in range(x1.size):
            k[i,j] = kfu_fn(x2[i], x1[j], theta, l, phi)
    return k







:raw-latex:`\begin{align*}
k_{uf}(x_i,x_j;\theta,\phi) &= \mathcal{L}_{x_j}^\phi k_{uu}(x_i, x_j; \theta) \\
&= \phi k_{uu} + \frac{\partial}{\partial x_j}k_{uu}  \\
&= \theta exp(-\frac{1}{2l}(x_i-x_j)^2) \left[ (\frac{1}{2})2|x_i-x_j| + \phi \right]\\
&= \theta exp(-\frac{1}{2l}(x_i-x_j)^2)(\phi+|x_i-x_j|)
\end{align*}`



In [8]:






def kuf(x1, x2, theta, l, phi):
    return kfu(x1, x2, theta, l, phi).T










Step 3: Compute the negative log marginal likelihood(NLML)

The following covariance matrix is the result of our discussion at the
end of Chapter 1.3.1, with an added noise parameter:

:raw-latex:`\begin{align*}
K = \begin{bmatrix}
k_{uu}(X_u, X_u; \theta) + \sigma_u^2I & k_{uf}(X_u, X_f; \theta, \phi) \\
k_{fu}(X_f, X_u; \theta, \phi) & k_{ff}(X_f, X_f; \theta, \phi) + \sigma_f^2I
\end{bmatrix}
\end{align*}`

For simplicity, assume \(\sigma_u = \sigma_f\).

:raw-latex:`\begin{align*}
\mathcal{NLML} = \frac{1}{2} \left[ log|K| + y^TK^{-1}y + Nlog(2\pi) \right]
\end{align*}`

where \(y = \begin{bmatrix} y_u \\ y_f \end{bmatrix}\).



In [9]:






def nlml(params, x1, x2, y1, y2, s):
    params = np.exp(params)
    K = np.block([
        [
            kuu(x1, params[0], params[1]) + s*np.identity(x1.size),
            kuf(x1, x2, params[0], params[1], params[2])
        ],
        [
            kfu(x1, x2, params[0], params[1], params[2]),
            kff(x2, params[0], params[1], params[2]) + s*np.identity(x2.size)
        ]
    ])
    y = np.concatenate((y1, y2))
    val = 0.5*(np.log(abs(np.linalg.det(K))) \
               + np.mat(y) * np.linalg.inv(K) * np.mat(y).T)
    return val.item(0)










Step 4: Optimize hyperparameters



In [10]:






nlml_wp = lambda params: nlml(params, x_u, x_f, y_u, y_f, 1e-6)
m = minimize(nlml_wp, np.random.rand(3), method="Nelder-Mead")









In [12]:






np.exp(m.x)









Out[12]:






array([11.90390211,  0.47469623,  2.00120508])







The estimated value comes very close to the actual value.

For the current model, we get the following optimal values of the
hyperparameters:







	Parameter

	Value





	\(\theta\)

	11.90390211



	\(l\)

	0.47469623



	\(\phi\)

	2.00120508












          

      

      

    

  

    
      
          
            
  


2D Linear operator with one parameter

Along the same lines as the previous example, we take a two-dimensional
linear operator corresponding to a two-dimensional system with a single
parameter. As previously explained, we set our problem up as follows:

It is easy to verify that \(\mathcal{L}_\bar{x}^\phi\) is linear and
continuous. A suitable solution for the operator is

:raw-latex:`\begin{align*}
u(\bar{x}) &= x_1 x_2 - x_2^2 \\
f(\bar{x}) &= \phi x_1 x_2 - \phi x_2^2 + x_2 - 2 \end{align*}`

Now, we use the same Gaussian priors as before, except that they are now
defined on a two-dimensional space.

:raw-latex:`\begin{align*}
u(\bar{x}) &\sim \mathcal{GP}(0, k_{uu}(\bar{x},\bar{x}',\theta)) \\
f(\bar{x}) &\sim \mathcal{GP}(0, k_{ff}(\bar{x},\bar{x}',\theta,\phi)) \\
y_u &= u(X) + \epsilon_u; \; \epsilon_u \sim \mathcal{N}(0, \sigma_u^2I) \\
y_f &= f(X) + \epsilon_f; \; \epsilon_f \sim \mathcal{N}(0, \sigma_f^2I) \end{align*}`

The parameter estimation problem for the linear operator described above
is to estimate \(\phi\), given \(\{x, y_u, y_f\}\). Notice that
we evaluate \(u, f\) on the same set of points because it makes
sense from a physics point of view.


Simulate data

We use \(\phi = 2\) and try to estimate it.



In [2]:






def get_simulated_data(n, phi):
    x = np.random.rand(n,2)
    y_u = np.multiply(x[:,0], x[:,1]) - x[:,1]**2
    y_f = phi*y_u + x[:,1] - 2
    return (x, y_u, y_f)










Evaluate kernels

The implementation of the kernels is straightforward as done earlier.
Consequently, the corresponding code has been omitted from the report.


	\(k_{uu}(\bar{x}_i, \bar{x}_j; \theta) = \theta e^{(-l_1 (x_{i,1}-x_{j,1})^2 -l_2 (x_{i,2}-x_{j,2})^2)}\)


	\(k_{ff}(\bar{x}_i,\bar{x}_j;\theta,\phi) = \mathcal{L}_{\bar{x}_i}^\phi \mathcal{L}_{\bar{x}_j}^\phi k_{uu}(\bar{x}_i, \bar{x}_j; \theta) \\ = \mathcal{L}_{\bar{x}_i}^\phi \left( \phi k_{uu} + \frac{\partial}{\partial x_{j,1}}k_{uu} + \frac{\partial^2}{\partial^2 x_{j,2}}k_{uu}\right) \\ = \phi^2 k_{uu} + \phi \frac{\partial}{\partial x_{j,1}}k_{uu} + \phi \frac{\partial}{\partial x_{i,1}}k_{uu} \\  \quad + \phi \frac{\partial^2}{\partial^2 x_{j,2}}k_{uu} + \frac{\partial}{\partial x_{i,1}}\frac{\partial}{\partial x_{j,1}}k_{uu} + \phi \frac{\partial^2}{\partial^2 x_{i,2}}k_{uu} \\  \quad + \frac{\partial}{\partial x_{i,1}}\frac{\partial^2}{\partial^2 x_{j,2}}k_{uu} + \frac{\partial^2}{\partial^2 x_{i,2}}\frac{\partial}{\partial x_{j,1}}k_{uu} + \frac{\partial^2}{\partial^2 x_{i,2}}\frac{\partial^2}{\partial^2 x_{j,2}}k_{uu}\)


	\(k_{fu}(\bar{x}_i,\bar{x}_j;\theta,\phi) = \mathcal{L}_{\bar{x}_i}^\phi k_{uu}(\bar{x}_i, \bar{x}_j; \theta) \\ = \phi k_{uu} + \frac{\partial}{\partial x_{i,1}}k_{uu} + \frac{\partial^2}{\partial x_{i,2}^2}k_{uu}\)






In [8]:






(x, yu, yf) = get_simulated_data(10, 2)
nlml((1, 1, 1, 0.69), x, yu, yf, 1e-6)









Out[8]:






10.124377463652147










Optimize hyperparameters



In [9]:






nlml_wp = lambda params: nlml(params, x, yu, yf, 1e-7)
m = minimize(nlml_wp, np.random.rand(4), method="Nelder-Mead")









In [11]:






np.exp(m.x)









Out[11]:






array([1.29150445e+06, 4.54133519e-05, 5.27567407e-04, 2.00497047e+00])







The optimized hyperparameters are:







	Parameter

	Value





	\(\theta\)

	1.29150445e+06



	\(l_1\)

	4.54133519e-05



	\(l_2\)

	5.27567407e-04



	\(\phi\)

	2.00497047









Analysis

To investigate error properties for this model, we run simulations from
5 to 25 datapoints with 5 samples of random data in each case which is
100 samples. The absolute error in the parameter estimate,
\(|\phi_{est} - \phi_{true}|\) is plotted in the left figure below.
The execution time is plotted to the right; it includes the time taken
to simulate the data and the time taken by the optimization routine.



In [76]:






plt.show()
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1D Linear operator with two parameters

In the previous examples we focus on systems with only one parameter. To
see if the framework can be applied to a more general case, we use a 1D
linear operator on two parameters, and verify the prediction.

Here we set up the linear operator as follows:

:raw-latex:`\begin{align*}
\mathcal{L}_x^\phi u(x) &= f(x) \\
\mathcal{L}_x^\phi &:= \phi_1 \cdot + \phi_2\frac{d}{dx}\cdot
\end{align*}`

A suitable solution can be:

:raw-latex:`\begin{align*}
u ( x ) & = \sin ( x ) \\
f ( x ) & = \phi _ { 1 } \sin ( x ) + \phi _ { 2 } \cos ( x ) \\
x & \in [ 0,1 ]
\end{align*}`

In this example, we assume \(\phi_1 = 2\), \(\phi_2 = 5\), and
estimate \(\phi_1\) and \(\phi_2\).


Simulate data



In [2]:






##Initiating f(x) and u(x) with 20 data points
x = np.random.rand(20)
phi1 = 2.0
phi2 = 5.0
y_u = np.sin(x)
y_f = phi1*np.sin(x) + phi2*np.cos(x)










Evaluate kernels

Corresponding kernels are defined as following:

\(k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) = \theta \exp \left( - \frac { 1 } { 2 l } \left( x _ { i } - x _ { j } \right) ^ { 2 } \right)\)

\(\left. \begin{array} { l } { k _ { f f } \left( x _ { i } , x _ { j } ; \theta , \phi _ { 1 } , \phi _ { 2 } \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } \mathcal { L } _ { x _ { j } } ^ { \phi } k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } \left( \phi _ { 1 } k _ { u u } + \phi _ { 2 } \frac { \partial } { \partial x _ { j } } k _ { u u } \right) } \\ { = \phi _ { 1 } ^ { 2 } k _ { u u } + \phi _ { 1 } \phi _ { 2 } \frac { \partial } { \partial x _ { j } } k _ { u u } + \phi _ { 1 } \phi _ { 2 } \frac { \partial } { \partial x _ { i } } k _ { u u } + \phi _ { 2 } ^ { 2 } \frac { \partial } { \partial x _ { i } } \frac { \partial } { \partial x _ { i } } k _ { u u } } \end{array} \right.\)

\(k_{fu}(x_i,x_j;\theta,\phi_1, \phi_2) \\ = \mathcal{L}_{x_i}^\phi k_{uu}(x_i, x_j; \theta) \\ = \phi_1 k_{uu} + \phi_2 \frac{\partial}{\partial x_i}k_{uu}\)

\(\left. \begin{array} { l } { k _ { u f } \left( x _ { i } , x _ { j } ; \theta , \phi _ { 1 } , \phi _ { 2 } \right) } \\ { = \mathcal { L } _ { x _ { j } } ^ { \phi } k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) } \end{array} \right.\)




Optimize hyperparameters



In [14]:






phi ## Estimated phi1 and phi2 using noiseless data points









Out[14]:






[1.9999955379492513, 5.000001322351089]













	Parameter

	Value





	\(\phi_1\)

	1.9999



	\(\phi_2\)

	5.0000






We see that the error rate is less than 0.01% for the hyperparameter
estimation. This example shows, that one can use our framework for
multiple parameter estimation.







          

      

      

    

  

    
      
          
            
  


1D linear operator with a zero parameter

We have shown that parameter estimation works well with positive
parameters. In some complex problems, one might include extra terms in
the predicted function, whose parameter equals to 0 in the end. To check
if the framework works in such case, we construct the following example:

:raw-latex:`\begin{align*}
\mathcal{L}_x^\phi &:= \phi_1 \cdot + \phi_2\frac{d}{dx}\cdot + \phi_3\frac{d^2}{dx^2}\cdot \\
u(x) &= sin(x) \\
f(x) &= \mathcal{L}_x^\phi u(x)\\
&=\phi_1 sin(x) + \phi_2 cos(x) - \phi_3 sin(x) \\
&=(\phi_1- \phi_3)sin(x) + \phi_2 cos(x) \\
x &\in [0, 1] \\
\end{align*}`


Simulate data

We assume \(\phi_1 = 2\) and \(\phi_3 = 5\), and \(cos(x)\)
is the extra term with \(\phi_2 = 0\), then the function f is given
by:

:raw-latex:`\begin{align*}
f(x) &= -3sin(x)
\end{align*}`




Evaluate kernels

Corresponding kernels are defined as follows:

\(k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) = \theta \exp \left( - \frac { 1 } { 2 l } \left( x _ { i } - x _ { j } \right) ^ { 2 } \right)\)

\(\left. \begin{array} { l } { k _ { f f } \left( x _ { i } , x _ { j } ; \theta , \phi _ { 1 } , \phi _ { 2 } , \phi _ { 3 } \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } \mathcal { L } _ { x _ { j } } ^ { \phi } k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } \left( \phi _ { 1 } k _ { u u } + \phi _ { 2 } \frac { \partial } { \partial x _ { j } } k _ { u u } + \phi _ { 3 } \frac { \partial ^ { 2 } } { \partial x _ { j } ^ { 2 } } k _ { u u } \right) } \\ { = \left( \phi _ { 1 } k _ { u u } + \phi _ { 2 } \frac { \partial } { \partial x _ { i } } k _ { u u } + \phi _ { 3 } \frac { \partial ^ { 2 } } { \partial x _ { i } ^ { 2 } } k _ { u u } \right) \left( \phi _ { 1 } k _ { u u } + \phi _ { 2 } \frac { \partial } { \partial x _ { j } } k _ { u u } + \phi _ { 3 } \frac { \partial ^ { 2 } } { \partial x _ { j } ^ { 2 } } k _ { u u } \right) } \end{array} \right.\)

\(\left. \begin{array} { l } { k _ { f u } \left( x _ { i } , x _ { j } ; \theta , \phi _ { 1 } , \phi _ { 2 } , \phi _ { 3 } \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) } \\ { = \phi _ { 1 } k _ { u u } + \phi _ { 2 } \frac { \partial } { \partial x _ { i } } k _ { u u } + \phi _ { 3 } \frac { \partial ^ { 2 } } { \partial x _ { i } ^ { 2 } } k _ { u u } } \end{array} \right.\)

\(\left. \begin{array} { l } { k _ { u f } \left( x _ { i } , x _ { j } ; \theta , \phi _ { 1 } , \phi _ { 2 } , \phi _ { 3 } \right) } \\ { = \mathcal { L } _ { x _ { i } } ^ { \phi } k _ { u u } \left( x _ { i } , x _ { j } ; \theta \right) } \end{array} \right.\)

The kernels apply to the general 1D system with three parameters.




Optimize hyperparameters



In [16]:






phi # [phi1 - phi3, phi2]









Out[16]:






[-3.0110910877279604, 0.006341664007503534]













	Parameter

	Value





	\(\phi_1 - \phi_3\)

	-3.0001



	\(\phi_2\)

	0.18e-05






The parameter estimation is very close to our prediction. The linear
operator can be applied to most 1D linear PDE problems, which is quite
powerful. While dealing with some specific problems, we can add more
terms in the form of the transformation, then the parameter estimation
with Gaussian Processes determines which of these terms are redundant.







          

      

      

    

  

    
      
          
            
  


Heat equation

The heat equation is a parabolic partial differential equation that
describes the distribution of heat (or variation in temperature) in a
given region over time. The general form of the equation in any
coordinate system is given by:

:raw-latex:`\begin{align*}
\frac{\partial u}{\partial t} - \phi \nabla^2 u = f
\end{align*}`

We will work here with the heat equation in one spatial dimension. This
can be formulated as:

:raw-latex:`\begin{align*}
\mathcal{L}_{\bar{x}}^{\phi}u(\bar{x}) = \frac{\partial}{\partial t}u(\bar{x}) - \phi \frac{\partial^2}{\partial x^2}u(\bar{x}) = f(\bar{x}),
\end{align*}` where \(\bar{x} = (t, x) \in \mathbb{R}^2\).

The fundamental solution to the heat equation gives us:

:raw-latex:`\begin{align*}
u(x,t) &= e^{-t}sin(2\pi x) \\
f(x,t) &= e^{-t}(4\pi^2 - 1)sin(2\pi x)
\end{align*}`


Simulate data



In [2]:






np.random.seed(int(time.time()))
def get_simulated_data(n):
    t = np.random.rand(n)
    x = np.random.rand(n)
    y_u = np.multiply(np.exp(-t), np.sin(2*np.pi*x))
    y_f = (4*np.pi**2 - 1) * np.multiply(np.exp(-t), np.sin(2*np.pi*x))
    return (t, x, y_u, y_f)

(t, x, y_u, y_f) = get_simulated_data(10)










Evaluate kernels

We use a reduced version of the kernel here.


	\(k_{uu}(x_i, x_j, t_i, t_j; \theta) = e^ \left[ -\theta_1 (x_i-x_j)^2 - \theta_2 (t_i-t_j)^2 \right]\)


	\(k_{ff}(\bar{x}_i,\bar{x}_j;\theta,\phi) = \mathcal{L}_{\bar{x}_i}^\phi \mathcal{L}_{\bar{x}_j}^\phi k_{uu}(\bar{x}_i, \bar{x}_j; \theta) = \mathcal{L}_{\bar{x}_i}^\phi \left[ \frac{\partial}{\partial t_j}k_{uu} - \phi \frac{\partial^2}{\partial x_j^2} k_{uu} \right] \\ = \frac{\partial}{\partial t_i}\frac{\partial}{\partial t_j}k_{uu} - \phi \left[ \frac{\partial}{\partial t_i}\frac{\partial^2}{\partial x_j^2}k_{uu} + \frac{\partial^2}{\partial x_i^2}\frac{\partial}{\partial t_j}k_{uu} \right] + \phi^2 \frac{\partial^2}{\partial x_i^2}\frac{\partial^2}{\partial x_j^2}k_{uu}\)


	\(k_{fu}(\bar{x}_i,\bar{x}_j;\theta,\phi) = \mathcal{L}_{\bar{x}_i}^\phi k_{uu}(\bar{x}_i, \bar{x}_j; \theta) = \frac{\partial}{\partial t_i}k_{uu} - \phi \frac{\partial^2}{\partial x_i^2}k_{uu}\)







Optimize hyperparameters



In [10]:






%%timeit
nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
minimize(
    nlml_wp,
    np.random.rand(3),
    method="Nelder-Mead",
    options={'maxiter' : 5000, 'fatol' : 0.001})













2.13 s ± 267 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)








In [11]:






def minimize_restarts(t, x, y_u, y_f, n = 10):
    nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
    all_results = []
    for it in range(0,n):
        all_results.append(
            minimize(
                nlml_wp,
                np.random.rand(3),
                method="Nelder-Mead",
                options={'maxiter' : 5000, 'fatol' : 0.001}))
    filtered_results = [m for m in all_results if 0 == m.status]
    return min(filtered_results, key = lambda x: x.fun)








Estimated value of \(\alpha\)



In [13]:






np.exp(m.x[2])









Out[13]:






0.9701718328188159












Analysis


Contour lines for the likelihood



In [16]:






plt.show()
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Profile likelihood



In [20]:






plt.show()
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Errors

We generate 5 set of samples for each number of data points(n) in the
range (5,25) as earlier. The absolute error in the parameter estimate
and the computation times are plotted in the following figure.



In [135]:






plt.show()












[image: ../_images/report_07-heat_30_0.png]




The minimum error for each value of n is bounded by 0.002 for n > 10.
The computation time also increases monotonically with n.




With the full kernel



In [30]:






nlml((1,1,1,0), t, x, y_u, y_f, 1e-6)









Out[30]:






1100767.8910308597









In [31]:






%%timeit
nlml_wp = lambda params: nlml(params, t, x, y_u, y_f, 1e-7)
minimize(
    nlml_wp,
    np.random.rand(4),
    method="Nelder-Mead",
    options={'maxiter' : 5000, 'fatol' : 0.001})













6.93 s ± 1.94 s per loop (mean ± std. dev. of 7 runs, 1 loop each)






The reduced kernel takes less time for optimization as compared to the
full one.



In [137]:






plt.show()
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The same analysis as earlier in the chapter was done for the full kernel
given by
\(\theta exp((\mathbf{x}-\mathbf{y})^T \Sigma (\mathbf{x}-\mathbf{y}))\)
where \(\Sigma = diag([l_1, l_2])\).

It can be noticed that the error in parameter estimate is slightly lower
for the full kernel but the difference is not very significant.
Meanwhile, the execution times are significantly different for both the
cases. For 10 data points, the minimizer takes an average of 2.13
seconds for the reduced kernel while it is 6.93 seconds for the full
kernel. This shows that not all hyperparameters might be necessary to
get acceptable results. For some specific problems, having an intuition
on the choice of kernels might be fruitful in the end.









          

      

      

    

  

    
      
          
            
  


Wave equation


Problem Setup

The general solution is given by: \(u(x,t) = F(x-ct) + G(x+ct)\)
with F, G some functions.

Take \(F(x) = x^2\) and \(G(x) = \sin(x)\) and \(c=1\).

Thus: \(u(x,t) = (x-t)^2 + \sin(x + t)\).

Set \(f = 0\).

Consider \(u\) to be a Gaussian process:

\(u \sim \mathcal{GP}(0, k_{uu}(x_i, x_j; \tilde{\theta}))\) with
the hyperparameters \(\tilde{\theta} = \{\theta, l_x, l_t\}\).

And the linear operator:

\(\mathcal{L}_x^c = \frac{d^2}{dt^2} \cdot - c \frac{d^2}{dx^2} \cdot\)

so that

\(\mathcal{L}_x^c u = f\)

Problem at hand: Estimate \(c\) (should be \(c = 1\) in the
end).




Step 1: Simulate data

\(x \in [0, 1]^n, \; t \in [0,1]^n\)



In [3]:






def get_simulated_data(n = 20):
    t = np.random.rand(n)
    x = np.random.rand(n)
    y_u = np.multiply(x-t, x-t) + np.sin(x+t)
    y_f = 0*x
    return(x, t, y_u, y_f)

(x, t, y_u, y_f) = get_simulated_data()










Step 2: Evaluate kernels


	\(k_{uu}(y_i, y_j; \tilde{\theta}) = \theta exp(-\frac{1}{2l_x}(x_i-x_j)^2 - \frac{1}{2l_t}(t_i-t_j)^2)\),
where \(y_i = (x_i, t_i)\), \(y_j = (x_j, t_j)\).


	\(k_{ff}(y_i,y_j; \tilde{\theta}, c) = \mathcal{L}_{y_i}^c \mathcal{L}_{y_j}^c k_{uu}(y_i, y_j; \tilde{\theta}) \\ = \frac{d^4}{dt_i^2 dt_j^2}k_{uu} - c\frac{d^4}{dt_i^2 dx_j^2}k_{uu} - c\frac{d^4}{dx_i^2 dt_j^2}k_{uu} + c^2\frac{d^4}{dx_i^2 dx_j^2}k_{uu}\)


	\(k_{fu}(y_i,y_j;\tilde{\theta}, c) = \mathcal{L}_{\tilde{x}_i}^c k_{uu}(y_i, y_j; \tilde{\theta}) = \frac{d^2}{dt_i^2}k_{uu} - c\frac{d^2}{dx_i^2}k_{uu}\)


	\(k_{uf}(y_i, y_j; \tilde{\theta}, c)\) is given by the transpose
of \(k_{fu}(y_i, y_j; \tilde{\theta}, c)\).







Steps 3 and 4: Compute NLML and optimize the hyperparameters



In [10]:






m = minimize_restarts(x, t, y_u, y_f, 5)
np.exp(m.x[3]) # This is the optimized value for our parameter c









Out[10]:






0.9978007101765757










Step 5: Plotting the behavior for varied parameters

The logarithms of the optimal hyperparameters are given by (arranged in
\([\theta, l_x, l_t, c]\)):



In [11]:






m.x









Out[11]:






array([ 6.67851868e+00,  2.71167786e+00,  2.66415024e+00, -2.20171181e-03])







We want to plot the behavior of the nlml-function around the minimizer:



In [13]:






show_1(lin0, lin1, lin3, res0, res1, res2, res3);
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Step 6: Analysis of the error

In this section we want to analyze the error of our algorithm using two
different ways and plot its time complexity.

1. Plotting the error in our estimate for c:

The error is given by \(| c_{estimate} - c_{true} |\).

We ran the algorithm five times and plotted the respective outcomes in
different colors:



In [33]:






show_3(lin, ones, res)












[image: ../_images/report_10-wave_39_0.png]




We see that for n sufficiently large (in this case \(n \geq 10\)),
we can assume the error to be bounded by 0.041.

2. Plotting the error between the solution and the approximative
solution:



In [39]:






show_4(lin, ones, res, diff)












[image: ../_images/report_10-wave_45_0.png]




The \(L^2\)-error is in our case bounded by 0.015 for
\(n \geq 10\).

3. Plotting the execution time:



In [42]:






show_5(lin, timing)
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Curiously, the time complexity seems to be around
\(\mathcal{O}(n^{4/3})\) (blue-dashed line).

Assuming an equal amount of function evaluations in the Nelder-Mead
algorithm for different values of n, we would have been expecting a time
complexity of \(\mathcal{O}(n^3)\), due to the computation of the
inverse of an \(n\times n\)-matrix in every evaluation of
\(\textit{nlml}\). This could probably be seen with larger values of
n.







          

      

      

    

  

    
      
          
            
  


The inviscid Burgers’ Equation


Problem Setup

Then \(u_0(x) := u(x,0) = x\)

Using the backward Euler scheme, the equation can be re-written as:

We set \(u_n = \mu_{n-1}\), where \(\mu_{n-1}\) is the mean of
\(u_{n-1}\), to deal with the non-linearity:

Consider \(u_n\) to be a Gaussian process.

\(u_n \sim \mathcal{GP}(0, k_{uu}(x_i, x_j; \theta, l))\)

And the linear operator:

\(\mathcal{L}_x^c = \cdot + \tau c \mu_{n-1} \frac{d}{dx}\cdot\)

so that

\(\mathcal{L}_x^c u_n = u_{n-1}\)

Problem at hand: Estimate \(c\). Using 20 data points, we will be
able to estimate c to be 0.9994.

For the sake of simplicity, take \(u := u_n\) and
\(f := u_{n-1}\).




Step 1: Simulate data

Take data points at \(t = 0\) for \((u_{n-1})\) and
\(t = \tau\) for \((u_n)\), where \(\tau\) is the time step.

\(x \in [0, 1], \; t \in \{0, \tau \}\)



In [3]:






tau = 0.001
def get_simulated_data(tau, n=20):
    x = np.random.rand(n)
    y_u = x/(1+tau)
    y_f = x
    return (x, y_u, y_f)

(x, y_u, y_f) = get_simulated_data(tau)









In [6]:






show_1(x,y_u,y_f)
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Step 2: Evaluate kernels


	\(k_{uu}(x_i, x_j; \theta, l) = \theta exp(-\frac{1}{2l}(x_i-x_j)^2)\),
where \(\theta, l > 0\)


	\(k_{ff}(x_i,x_j;\theta, l, c) = \mathcal{L}_{x_i}^c \mathcal{L}_{x_j}^c k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau c \mu_{n-1} \frac{d}{dx_i}k_{uu} + \tau c \mu_{n-1} \frac{d}{dx_j}k_{uu} + \tau^2 c^2 \mu_{n-1}^2 \frac{d^2}{d x_i x_j} k_{uu}\)


	\(k_{fu}(x_i,x_j; \theta, l, c) = \mathcal{L}_{x_i}^c k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau \mu_{n-1} c \frac{d}{dx_i}k_{uu}\)


	\(k_{uf}(x_i,x_j;\theta, l, c)\) is given by the transpose of
\(k_{fu}(x_i,x_j;\theta, l, c)\)







Steps 3 and 4: Compute NLML and optimize the hyperparameters



In [ ]:






m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
             "Nelder-Mead", options = {'maxiter' : 1000})









In [11]:






m.x[2]  # This is our inferred value for c









Out[11]:






0.9994300669651587










Step 5: Analysis w.r.t. the number of data points (up to 25):

In this section we want to analyze the error of our algorithm using two
different ways and plot its time complexity.

1. Plotting the error in our estimate for c:

The error is given by \(| c_{estimate} - c_{true} |\).

We have altogether ran the algorithm five times, each time increasing
the number of data points:



In [150]:






show_2(lin, ones, res)
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We see that for n sufficiently large (in this case \(n \geq 5\)), we
can assume the error to be bounded by 0.5. It seems to be difficult to
(even roughly) describe the limiting behavior of the error w.r.t. the
number of data points.

2. Plotting the error between the solution and the approximative
solution:



In [155]:






show_2(lin, ones, res)












<Figure size 360x216 with 0 Axes>
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3. Plotting the execution time:

All in one plot (the blue dashed line follows
\(f(x) = 0.01x^{2.2}\)):



In [92]:






show_3(lin, timing)
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The time complexity seems to be around \(\mathcal{O}(n^{2.2})\)
(blue-dashed line).







          

      

      

    

  

    
      
          
            
  


The inviscid Burgers’ Equation - A different approach


Problem Setup

Setting \(u(x,t) = \frac{x}{1+t}\), we expect \(\nu = 0\) as a
parameter.

Then \(u_0(x) := u(x,0) = x\).

Using the forward Euler scheme, the equation can be re-written as:

and setting the factor \(u_{n-1} = \mu_{n-1}\) (analogously to the
previous subchapter this is the mean of \(u_{n-1}\)) to deal with
the non-linearity:

Consider \(u_{n-1}\) to be a Gaussian process.

\(u_{n-1} \sim \mathcal{GP}(0, k_{uu}(x_i, x_j; \theta, l))\)

And the linear operator:

\(\mathcal{L}_x^\nu = \cdot + \tau \nu \frac{d}{dx}\cdot - \tau \mu_{n-1} \frac{d}{dx} \cdot\)

so that

\(\mathcal{L}_x^\nu u_{n-1} = u_n\)

Problem at hand: Estimate \(\nu\) (should be \(\nu = 0\) in the
end).

For the sake of simplicity, take \(u := u_{n-1}\) and
\(f := u_n\).




Step 1: Simulate data

Take data points at \(t = 0\) for \((u_{n-1})\) and
\(t = \tau\) for \((u_n)\), where \(\tau\) is the time step.

\(x \in [0, 1], \; t \in \{0, \tau \}\)



In [10]:






tau = 0.001
def get_simulated_data(tau, n=20):
    x = np.random.rand(n)
    y_u = x
    y_f = x/(1+tau)
    return (x, y_u, y_f)

(x, y_u, y_f) = get_simulated_data(tau)









In [81]:






show_1(x, y_u, y_f)












[image: ../_images/report_09-burgers2_13_0.png]







Step 2: Evaluate kernels


	\(k_{uu}(x_i, x_j; \theta, l) = \theta exp(-\frac{1}{2l}(x_i-x_j)^2)\)


	\(k_{ff}(x_i,x_j;\theta, l,\nu) = \mathcal{L}_{x_i}^\nu \mathcal{L}_{x_j}^\nu k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau \nu \frac{d}{dx_i}k_{uu} - \tau \mu_{n-1} \frac{d}{dx_i}k_{uu} + \tau \nu \frac{d}{dx_j}k_{uu} + \tau^2 \nu^2 \frac{d}{dx_i} \frac{d}{dx_j}k_{uu} - \tau^2 \nu \mu_{n-1}\frac{d^2}{dx_i dx_j} k_{uu} - \tau \mu_{n-1} \frac{d}{dx_j}k_{uu} - \tau^2 \nu \mu_{n-1} \frac{d^2}{dx_i dx_j} k_{uu} + \tau^2 \mu_{n-1}^2 \frac{d^2}{dx_i dx_j}k_{uu}\)


	\(k_{fu}(x_i,x_j;\theta,l,\nu) = \mathcal{L}_{x_i}^\nu k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau \nu \frac{d}{dx_i}k_{uu} - \tau \mu_{n-1}\frac{d}{dx_i}k_{uu}\)


	\(k_{uf}(x_i,x_j;\theta, l, \nu)\) is given by the transpose of
\(k_{fu}(x_i,x_j;\theta, l, \nu)\).







Steps 3 and 4: Compute NLML and optimize the hyperparameters



In [76]:






m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
             "Nelder-Mead", options = {'maxiter' : 1000})









In [77]:






m.x[2]   # This is our inferred value for \nu









Out[77]:






0.00021347647791778476










Step 5: Analysis w.r.t. the number of data points (up to 25):

In this section we want to analyze the error of our algorithm and plot
its time complexity.

1. Plotting the error in our estimate:

The error is given by \(| \nu_{estimate} - \nu_{true} |\).

We plot the error with respect to the number of data samples for five
runs of the program:



In [100]:






show_2(lin, res)












<Figure size 360x216 with 0 Axes>
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We see that for n sufficiently large (in this case \(n \geq 8\)), we
can assume the error to be bounded by 0.16.

2. Plotting the error between the solution and the approximative
solution:

3. Plotting the execution time:

The blue-dashed line follows \(f(x) = 0.032 x^2\).



In [59]:






show_3(lin, timing)












[image: ../_images/report_09-burgers2_43_0.png]




We observe a time complexity of roughly \(\mathcal{O}(n^2)\)
(blue-dashed line).




Comparison with a no-mean version

\(\tau \nu \frac{d^2}{dx^2}u_{n-1} - \tau x \frac{d}{dx}u_{n-1} + u_{n-1} = u_{n}\)

The linear operator looks just slightly different:

\(\mathcal{L}_x^\nu = \cdot + \tau \nu \frac{d}{dx}\cdot - \tau x \frac{d}{dx} \cdot\)

so that

\(\mathcal{L}_x^\nu u_{n-1} = u_n\).

Our kernels evaluate to:


	\(k_{uu}(x_i, x_j; \theta, l) = \theta exp(-\frac{1}{2l}(x_i-x_j)^2)\)


	\(k_{ff}(x_i,x_j;\theta, l,\nu) = \mathcal{L}_{x_i}^\nu \mathcal{L}_{x_j}^\nu k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau \nu \frac{d}{dx_i}k_{uu} - \tau x \frac{d}{dx_i}k_{uu} + \tau \nu \frac{d}{dx_j}k_{uu} + \tau^2 \nu^2 \frac{d}{dx_i} \frac{d}{dx_j}k_{uu} - \tau^2 \nu x\frac{d^2}{dx_i dx_j} k_{uu} - \tau x \frac{d}{dx_j}k_{uu} - \tau^2 \nu x \frac{d^2}{dx_i dx_j} k_{uu} + \tau^2 x^2 \frac{d^2}{dx_i dx_j}k_{uu}\)


	\(k_{fu}(x_i,x_j;\theta,l,\nu) = \mathcal{L}_{x_i}^\nu k_{uu}(x_i, x_j; \theta, l) \\ = k_{uu} + \tau \nu \frac{d}{dx_i}k_{uu} - \tau x\frac{d}{dx_i}k_{uu}\)


	\(k_{uf}(x_i,x_j;\theta, l, \nu)\) is given by the transpose of
\(k_{fu}(x_i,x_j;\theta, l, \nu)\).




After constructing the nlml we get:



In [17]:






m = minimize(nlml, np.random.rand(3), args=(x, y_u, y_f, 1e-7), method=\
             "Nelder-Mead", options = {'maxiter' : 1000})
m.x[2] # This is our prediction for \nu









Out[17]:






0.00042724953581625225







We can analyze the error in multiple runs and look at the execution
time:

1. Plotting the error in our estimate for \(\nu\)

The error is given by \(| \nu_{estimate} - \nu_{true} |\).



In [30]:






show_4(lin, est, res)
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We see that for n sufficiently large (in this case \(n \geq 5\)), we
can assume the error to be bounded by 0.0009.

2. Plotting the execution time:



In [57]:






show_5(lin, timing)












[image: ../_images/report_09-burgers2_67_0.png]




The time complexity seems to be as before roughly
\(\mathcal{O}(n^2)\).







          

      

      

    

  

    
      
          
            
  


Parameter Estimation for a linear operator using pyGPs

When starting to work on this project, we were looking for a suitable Python package giving us the capabilities we needed concerning Gaussian Processes. We therefore implemented the early code using the pyGPs-package [17]. It is a package best suited for classical Gaussian Process Regression or Classification. After installing pyGPs and testing it, using the provided test data, there appeared an ‘Intel MKL FATAL ERROR: Cannot load mkl_intel_thread.dll’ - error, which we were not able to resolve. By switching from Windows to a Linux Cluster, this issue could be circumvented.

Our approach with pyGPs went as follows:


	We assume Gaussian Priors with zero mean and an RBF Kernel for u and f, i.e.:


\[\begin{split}u(x) \sim \mathcal{GP}(0, k_{uu}(x, x'; \sigma_u, l_u)) \\
f(x) \sim \mathcal{GP}(0, k_{ff}(x, x'; \sigma_f, l_f))\end{split}\]



	Given the data \(\{X_u, Y_u\}\) and \(\{X_f, Y_f\}\), we can now optimize the hyperparameters of the two Gaussian
Processes separately using pyGPs.


	Since \(f=\mathcal{L}_x^{\phi} u(x)\), we know that the covariance matrix for f is given by
\(k_f = \mathcal{L}_{x'}^{\phi} \mathcal{L}_x^{\phi} k_{uu}\) (cf. Chapter 1.3.1). As an approximation, we set \(k_f    = k_{ff}\). As a consequence, also


\[k_f(x_i, x_i) = k_{ff}(x_i, x_i)\]

must hold for all data points \(x_i\). Rearranging leads to some function


\[\phi = g(\sigma_u, \sigma_f, l_u),\]

which we can evaluate.





Now this approach worked for simple examples (e.g. in the Example implementation), though it failed for more complicated ones. As an attempt to resolve this problem, we wanted to avoid the approximation in step 3 and work with the correct covariance matrix instead. The pyGPs-package allows the user to define custom covariance functions. This was of no avail mainly due to incongruities in the pyGPs source code regarding the derivatives of covariance functions in combination with insufficient documentation in that regard and the resulting complexity of the task itself. As an example, we have included a custom covariance function in the appendix. We finally ceased expanding upon this approach, since it is not clear, whether the independent optimization of the hyperparameters for the functions u and f would yield the result we are striving for.


Example implementation

Assumptions:

\(\mathcal{L}_x^{\phi}u(x) = f(x)\)

\(u(x) \sim \mathcal{GP}(0, k_{uu}(x, x'; \theta))\)

\(f(x) \sim \mathcal{GP}(0, k_{ff}(x, x'; \theta, \phi))\)

\(\theta = \{\sigma, l\}\)

Chosen operator: \(\mathcal{L}_x^{\phi}u(x) = \phi*u(x)\)

We choose the following two functions to sample the data (The factor 12
can be varied):

Problem at hand: Given \(\{X_u, y_u\}\) and \(\{X_f, y_f\}\),
estimate \(\phi\).

We clearly expect \(\phi\) to be estimated as being as close to 12
as possible.

We will get an estimate of 12.05 using 15 evenly spaced data samples in
the interval \([0, 2\pi]\).

We employ a GP with a RBF kernel for u and f:

\(k_{uu}(x_i, x_j; \theta_u) = \sigma_u^2 \exp(-\frac{1}{2l_u^2}(x_i - x_j)^2)\)

\(k_{ff}(x_i, x_j; \theta_f) = \sigma_f^2 \exp(-\frac{1}{2l_f^2}(x_i - x_j)^2)\)

We use the known transformation behavior of Gaussian Processes:

\(k_{ff}(x_i, x_j; \theta, \phi) \\ = \mathcal{L}_{x_i}^{\phi}\mathcal{L}_{x_j}^{\phi}k_{uu}(x_i, x_j; \theta) \\ = \phi^2\sigma_u^2 \exp(-\frac{1}{2l_u^2}(x_i - x_j)^2)\)

Equating the two expressions we have for \(k_{ff}\) and comparing a
diagonal entry (where \(x_i = x_j\)), it follows that
\(\sigma_f^2 = \phi^2\sigma_u^2\), i.e.:



In [9]:






def main():

    import numpy as np
    import pyGPs

    # Generating data:
    # Keeping it as simple as possible, using sine instead of sqrt the pyGPs-
    # optimizer won't be able to calculate the optimal hyperparameters,
    # independent of the method
    x_u = np.linspace(0, 2*np.pi, 15)
    y_u = np.sqrt(x_u)

    x_f = x_u
    y_f = 12.0*np.sqrt(x_f)

    # The function u is assumed to be a Gaussian Process.
    # After a linear transformation, f has to be a Gaussian Process as well.

    model_u = pyGPs.GPR()
    model_u.setData(x_u, y_u)
    model_u.optimize(x_u, y_u)

    model_f = pyGPs.GPR()
    model_f.setData(x_f, y_f)
    model_f.optimize(x_f, y_f)

    # Note that in hyp only the logarithm of the hyperparameter is stored!
    # Characteristic length-scale l is equal to np.exp(hyp[0]) (Default: 1)
    # Signal variance sigma is equal to np.exp(hyp[1]) (Default: 1)

    # This should give 12 as output:
    print(np.exp(model_f.covfunc.hyp[1])/np.exp(model_u.covfunc.hyp[1]))

# Prevents execution by Sphinx:
if __name__ == '__main__':

    main()
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Demo of pyGPs

Here, we demonstrate a short program to show how to use the
pyGPs-package for regression tasks.



In [4]:






import numpy as np
import pyGPs







We are generating data by taking 50 evenly spaced values between -5 and
5 as our set of points X. For our respective set of points Y we are
generating Gaussian-distributed values with a parabola shaped mean and
an RBF Kernel with an added error term as our covariance:



In [5]:






X = np.arange(-5, 5, 0.2)
s = 1e-8                                                     # error term
n = X.size
m = 1/4*np.square(X)                                         # mean
a = np.repeat(X, n).reshape(n, n)
k = np.exp(-0.5*(a - a.transpose())**2) + s*np.identity(n)   # covariance
Y = np.random.multivariate_normal(m, k, 1)
Y = Y.reshape(n)                                             # Converting y from a
                                                             # matrix to an array







We treat the values \(x \in X\) (whilst
\(X \subseteq \mathbb{R}\)) as our input points and the values
\(y \in Y\) (\(Y \subseteq \mathbb{R}\)) as corresponding output
points. Handing these over to our model variable as data, we can use
pyGPs’ Gaussian Process Regression (With a zero mean, an RBF Kernel and
Gaussian likelihood as default).

Note, that we’re using a zero mean Gaussian Process prior for our data,
which has been generated by a parabola-shaped mean Gaussian. This shows
the flexibility of the model.

Using this, we can predict output values for values of x outside of our
initial range between -5 and 5.



In [17]:






model = pyGPs.GPR()
model.setData(X,Y)
# model.setPrior(mean=pyGPs.mean.Zero(), kernel=pyGPs.cov.RBF()) is redundant
model.optimize(X,Y)
model.predict(np.array([5,6,7,8,9,10]))
model.plot()













Number of line searches 40
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Own Covariance function for the Heat Equation with pyGPs

The definition of this kernel was an attempt to train a pyGPs-GPR-model
with the kernel given by \(k_{ff}\) in Chapter 3.1.2, in accordance
with the approach as it was described in Chapter 5.

The coefficients were calculated using the
heat_equation_with_pygps-v2.ipynb notebook on our GitHub-Page.

The optimal parameters for \(k_{uu}\) were estimated as
\([\sigma_u, l_u] = [2e-05, 1291919.81]\).



In [1]:






# The kernel has to be added to cov.py, which is located (with Windows and
# Anaconda) in C:\Users\SurfaceAdmin\Anaconda3\Lib\site-packages\pyGPs\Core

# Unfortunately the kernel is basically equal to zero and the optimizer
# will stick with the default value for the hyperparameter, which in turn
# returns 1.0 for phi.

# Own Kernel function (the try-except block was only added to prevent
# error-messages concerning the unknown Kernel-class after execution of
# the code):

try:
    class MyKernel2(Kernel):

        def __init__(self, log_phi=0.):
            self.hyp = [log_phi]

        def getCovMatrix(self,x=None,z=None,mode=None):
            self.checkInputGetCovMatrix(x,z,mode)
            p = np.exp(self.hyp[0])           # phi
            A = 0
            if not x is None:
                n, D = x.shape
                A = np.zeros((n,n))
            if not z is None:
                nn, D = z.shape
                A = np.zeros((nn,nn))
            if mode == 'self_test':
                A = np.zeros((nn,1))
            elif mode == 'train':             # compute covariance matrix for
                                              # the training set
                A = np.zeros((n,n))
                for i in range(n):
                    for j in range(n):
                        A[i][j] = (p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \
                                1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22) - \
                                2.39e-22*(x[i][0] - x[j][0])**2 + 3.09e-16)* \
                                np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
                                3.87e-7*(x[i][1] - x[j][1])**2)

            elif mode == 'cross':   # compute covariance between data sets x and z
                m = z.shape[0]
                A = np.zeros((n,m))
                for i in range(n):
                    for j in range(m):
                        A[i][j] = (p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \
                                1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22) - \
                                2.39e-22*(x[i][0] - z[j][0])**2 + 3.09e-16)* \
                                np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
                                3.87e-7*(x[i][1] - z[j][1])**2)
            return A

    # We are taking the derivative w.r.t. p, but are multiplying it with 2*p or p,
    # since that seems to be the pattern in the source code of pyGPs as well:

        def getDerMatrix(self,x=None,z=None,mode=None,der=None):
            self.checkInputGetCovMatrix(x,z,mode)
            p = np.exp(self.hyp[0])           # phi
            n = 0
            if not x is None:
                n, D = x.shape
            if not z is None:
                nn, D = z.shape
            if mode == 'self_test':           # self covariances for the test cases
                A = np.zeros((nn,1))
            elif mode == 'train':             # compute covariance matrix for
                                              # the dataset x
                A = np.zeros((n,n))
                for i in range(n):
                    for j in range(n):
                        A[i][j] = (p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \
                                1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22) - \
                                2.39e-22*(x[i][0] - x[j][0])**2 + 3.09e-16)* \
                                np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
                                3.87e-7*(x[i][1] - x[j][1])**2)

            elif mode == 'cross':             # compute covariance between data
                                              # sets x and z
                A = np.zeros((n,nn))
                for i in range(n):
                    for j in range(nn):
                        A[i][j] = (p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \
                                1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22) - \
                                2.39e-22*(x[i][0] - z[j][0])**2 + 3.09e-16)* \
                                np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
                                3.87e-7*(x[i][1] - z[j][1])**2)
            if der == 0:    # compute derivative matrix wrt 1st parameter
                if mode == 'train':
                    A = np.zeros((n,n))
                    for i in range(n):
                        for j in range(n):
                            A[i][j] = 4*p**2*(1.43e-34*(x[i][1] - x[j][1])**4 - \
                                    1.11e-27*(x[i][1] - x[j][1])**2 + 7.17e-22)*\
                                    np.exp(-3.87e-7*(x[i][0] - x[j][0])**2 - \
                                    3.87e-7*(x[i][1] - x[j][1])**2)
                elif mode == 'cross':
                    A = np.zeros((n,nn))
                    for i in range(n):
                        for j in range(nn):
                            A[i][j] = 4*p**2*(1.43e-34*(x[i][1] - z[j][1])**4 - \
                                    1.11e-27*(x[i][1] - z[j][1])**2 + 7.17e-22)*\
                                    np.exp(-3.87e-7*(x[i][0] - z[j][0])**2 - \
                                    3.87e-7*(x[i][1] - z[j][1])**2)
            else:
                raise Exception("Calling a derivative in RBF that doesn't exist")
            return A
except:
    pass









In [2]:






# Has to be added to pyGPs/Testing/unit_test_cov.py and then unit_test_cov.py
# has to be executed.
# For testing purposes only:

def test_cov_new(self):
    k = pyGPs.cov.MyKernel()     # specify your covariance function
    self.checkCovariance(k)











          

      

      

    

  

    
      
          
            
  


Exploring the GPy package



In [1]:






import time
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt









In [2]:






n = 10
np.random.seed(int(time.time()))
t = np.random.rand(n)
x = np.random.rand(n)
y_u = np.multiply(np.exp(-t), np.sin(2*np.pi*x))
y_f = (4*np.pi**2 - 1) * np.multiply(np.exp(-t), np.sin(2*np.pi*x))









In [3]:






import GPy









In [4]:






kernel = GPy.kern.RBF(input_dim=2)
kernel









Out[4]:
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